负责人工智能在好未来各个教学场景和事业部中的落地和应用。美国匹兹堡大学获得计算机专业博士。主要研究方向是机器学习和数据挖掘,以及相关方法在推荐、广告和教育场景的应用。在 WWW,SIGIR,AAAI 等重要国际会议发表论文二十余篇,并担任 AAAI,IJCAI,KDD 等国际会议程序委员会委员。回国前曾供职于 Pinterest,主要负责 Pinterest 的图片推荐和广告竞价等业务。
负责人工智能在好未来各个教学场景和事业部中的落地和应用。美国匹兹堡大学获得计算机专业博士。主要研究方向是机器学习和数据挖掘,以及相关方法在推荐、广告和教育场景的应用。在 WWW,SIGIR,AAAI 等重要国际会议发表论文二十余篇,并担任 AAAI,IJCAI,KDD 等国际会议程序委员会委员。回国前曾供职于 Pinterest,主要负责 Pinterest 的图片推荐和广告竞价等业务。
With the recent development of AI, there has been tremendous changes in both offline and online education. Entire in-class interactions and behaviors between students and instructors have been structured and stored, which provide valuable information for analyzing class performance and improving the learning experience. In this talk, I will first show some successful applications we deployed in TAL's offline and online classrooms. Then I will outline the challenges we meet during the course of building real-world AI+Edu applications.
After that, I will talk about the two initiatives we developed on (1) building a cost-effective and consistent approach of automatic oral language skills evaluation, which reduces the monotonous and tedious grading workloads from teaching professionals and (2) developing a multimodal learning framework of classroom activity detection, which break the blackbox of traditional learning environments.
参考译文:
随着AI的最新发展,离线和在线教育都发生了巨大变化。整个课堂里学生和教师之间的互动和行为都经过结构化设计,并存储起来用于分析,这为课堂表现和学习体验改善提供了有价值的信息。本次演讲中,我会展示我们在TAL的离线和在线教室中部署的一些成功案例,也会大概介绍在构建实际“AI + Edu”应用过程中遇到的挑战。
之后,我将讨论我们基于以下两点而制定的两项倡议:一是建立一种低成本且一致的自动口语技能评估方法,这将减少教学专业人员的单调乏味的评分工作量;二是开发多模式学习课堂活动检测的框架,有助于打破传统学习环境的障碍。
听众受益点: