个性化混合学习资源推荐实践

所属专题:人工智能业务架构

所属领域:

嘉宾 : 刘磊 | 机器学习专家

会议室 : 大宴会厅2

讲师介绍

专题演讲嘉宾:刘磊

机器学习专家

刘磊:机器学习专家,长期带领团队从事人工智能、机器学习方面的研发和软件架构工作。曾担任华为美国研究院首席机器学习科学家/软件架构师,主要工作集中在华为数据管理、云服务等业务群相关机器学习大数据解决方案。再此前,在惠普实验室作为资深研究科学家(Expert Level)和机器学习项目经理,从事机器学习研发工作。从零开始开发构建出多个重要项目,包括个性化混合学习平台METIS (http://www.hpmetis.com/; https://learn.canvas.net/courses/292/pages/hp-metis)。

刘磊的兴趣在于大数据环境下机器学习、深度学习等技术的研究和应用。在研和已完成项目包括:数据管理中机器学习核心技术,大规模数据分类,推荐系统,社会网络挖掘,网络僵尸病毒检测,可穿戴数据挖掘,基于传感器数据的个性化健康,基于大数据的教育系统。

研究成果获得或已提交美国专利40多项(机器学习,人工智能相关技术发明专利),发表论文30余篇。研发成果在机器学习大会或比赛中获得多项最佳论文或最佳系统奖,包括2016年于意大利获得 ECML-PKDD’2016 Best Machine Learning System Award in SPHERE Data Challenge, ACM WI’2016 最佳论文奖,HPICS’2016 最佳机器学习论文奖等。同时他是IEEE高级会员,担任机器学习、数据挖掘领域多个杂志、国际大会主席、分会场主席、程序委员会委员、特约审稿人。

刘磊获得美国密西根州立大学计算机科学技术博士学位。

议题介绍

地点:大宴会厅2
所属专题:人工智能业务架构
所属领域:

演讲:个性化混合学习资源推荐实践

Personalized Learning Resource Recommendation in Real-practice

With the advent of portable devices such as tablets and e-readers (amazon kindle, ipad, Google Chromebook, etc.), reading online content for educational, learning, training or recreational purposes has become a very popular activity. Compared to printed material, readers of digital content are offered several levels of interactivity. For example, digital content allows more interactive and collaborative learning, users may read additional or supplementary online content related to a specific part of the e-text that they have difficulty understanding or wish to explore more; they can add annotations; zoom-in on a picture, or play a video embedded in the content. Despite these advantages, printed media still provides other benefits that cannot be matched by digital. Some of the advantages of printed material include: 10-30% faster reading rate, lack of distractions, no device compatibility or Internet connection issues, cost effectiveness and, most importantly, the fact that print is still the medium preferred by the majority of students. Instead of eliminating these benefits, we believe that learning should be based on print and enhanced by the use of technology rather than replaced by it.

This presentation focuses on introducing a learning system, namely METIS, which leverages the benefits of reading of both printed and digital content and provide further enhancements to the reading experiences. The system architecture, along with machine learning services and algorithms will be discussed and introduced as well. The developed system has been deployed and piloted in Silicon Valley local schools and universities with thousands of participants in real class.

Outline:

  1. Background of Hybrid Learning
    1. Digital v.s. Physical Content
    2. Hybrid Content
  2. Hybrid Learning System
    1. System Architecture
    2. Content Creator View & Functions
    3. Reader’s View & Functions
  3. Machine Learning Technologies
    1. User profiling
    2. Personalized Content Recommendation
    3. Learning Graph Generation
    4. Illustration Image Recommendation
    5. EEG signal for attention detection
  4. Challenges
    1. Data sparsity
    2. “Too long to process” issue
    3. Semantic topic discovery and representation
  5. System deployment and Discussion
    1. Performance evaluation in real system
    2. Feedbacks

参考译文:

随着各种便携式设备如平板电脑、Kindle、Chromebook的广泛使用,在线教育、培训和娱乐等内容越来越流行。和传统的纸质材料相比,电子读物更具互动性,可以在线传播,学习更多的在线相关内容,遇到理解障碍可以在线查询,拓展知识视野,还可以阅读过程中添加注释,缩放,或者播放阅读内容里的嵌入视频多媒体资源。

然而,纸质读物也有自身优势,例如阅读速度更快,不会分心,不需要考虑和电子设备的兼容,成本低,最重要的是,绝大多数学生需要纸质读物。排除这些优势,我们相信在电子技术的辅助下,纸质读物仍然是学习的主体,而且也不该被电子设备完全替代。

本演讲将重点介绍METIS学习系统,该系统将电子和纸质读物内容的优势结合起来,为未来的高效阅读体验提供混合式的增强手段。我会在演讲中介绍并分析该系统中的机器学习和算法技术架构,这套系统已经在硅谷当地的中学和大学获得广泛应用。

演讲提纲:

1. 混合学习的背景

  • 电子和纸质阅读资源对比
  • 混合阅读资源

2. 混合学习系统

  • 系统架构
  • 内容创建者-系统功能
  • 读者-系统功能

3. 机器学习技术

  • 用户建模
  • 个性化内容推荐
  • 学习路径自动规划
  • 图像推荐实例
  • 机遇脑电波信号的注意力检测系统

4. 系统挑战

  • 数据稀疏性
  • 查询太长不能处理问题
  • 语义主题发现和表征

5. 系统部署和讨论

  • 系统性能评估
  • 客户效果反馈
想要批量报名或更多优惠?
立即联系票务报名小助手豆包
或致电:010-84780850